负载感知调度
负载感知调度
下述的例子来源于我们的 e2e test
1. 准备一个 kubernetes 集群
本例中使用的集群包含两个节点:每个节点有 2 个 CPU 核心和 8GiB 的内存。每个节点都带有一个自定义的 label data-test: data-test
以方便后续的测试。
在这个例子中,我们的 OBI 来自 metrics-server ,所以我们还需要先安装 metrics-server。
$ kubectl get node
NAME STATUS ROLES AGE VERSION
arbiter-e2e-control-plane Ready control-plane,master 13m v1.21.14
arbiter-e2e-worker Ready <none> 12m v1.21.14
2. 创建一个 pod 来消耗 CPU
使用下面的 YAML 文件,用 kubernetes 官方 e2e 镜像 创建一个 Pod,以消耗 CPU,这个 Pod 会消耗大量的 CPU,但是它的 resources.request.cpu
值很小:
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: test-cost-cpu-load
name: test-cost-cpu-load
spec:
replicas: 1
selector:
matchLabels:
app: test-cost-cpu-load
template:
metadata:
labels:
app: test-cost-cpu-load
spec:
containers:
- command:
- /consume-cpu/consume-cpu
- --millicores=1000
- --duration-sec=6000
image: kubearbiter/resource-consumer:1.10
name: consumer
resources:
requests:
cpu: 100m
运行下面的命令来查看两个集群节点的负载,可以看到节点 arbiter-e2e-worker
的 CPU 使用率很高。
$ kubectl top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
arbiter-e2e-control-plane 357m 17% 877Mi 12%
arbiter-e2e-worker 1004m 50% 506Mi 7%
3. 验证默认调度器不受实际资源使用的影响
我们创建一个有 4 个副本的 Deploy,使用以下 YAML 文件:
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: test-busybox-mul-ms
name: test-busybox-mul-ms
spec:
replicas: 4
selector:
matchLabels:
app: test-busybox-mul-ms
template:
metadata:
labels:
app: test-busybox-mul-ms
spec:
containers:
- command:
- /bin/sh
- -ec
- sleep 1000
image: busybox
name: busybox
下面的输出表明,pod 被均匀地调度到集群中的节点上。默认的 kube-scheduler 不能监控节点上实际的负载。
$ kubectl get po -o wide -l app=test-busybox-mul-ms
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
test-busybox-mul-ms-56678f47f5-6zxrf 1/1 Running 0 62s 10.244.1.18 arbiter-e2e-worker <none> <none>
test-busybox-mul-ms-56678f47f5-8zlxj 1/1 Running 0 62s 10.244.0.9 arbiter-e2e-control-plane <none> <none>
test-busybox-mul-ms-56678f47f5-mlwqf 1/1 Running 0 62s 10.244.0.10 arbiter-e2e-control-plane <none> <none>
test-busybox-mul-ms-56678f47f5-ntds5 1/1 Running 0 62s 10.244.1.17 arbiter-e2e-worker <none> <none>
4. 验证 arbiter-scheduler 能够感知实际的资源使用情况,并对其进行合理的安排
按照上一节 install 中的描述,安装 Arbiter。 并部署一些 OBI 来监控节点的 CPU 和内存,如上一节 定义一个 OBI 所述,我们可以使用 e2e test 中的 4 个 OBI,分别获取 2 个节点的 CPU 和内存使用情况,记录到 OBI 中
apiVersion: arbiter.k8s.com.cn/v1alpha1
kind: ObservabilityIndicant
metadata:
name: real-metrics-server-node-cpu-0
labels:
test: node-cpu-load-aware-ms
spec:
metric:
historyLimit: 1
metricIntervalSeconds: 30
metrics:
cpu:
aggregations:
- time
description: ""
query: ""
unit: 'm'
timeRangeSeconds: 600
source: metrics-server
targetRef:
group: ""
index: 0
kind: Node
labels:
data-test: data-test
name: ""
namespace: ""
version: v1
status:
conditions: []
phase: ""
metrics: {}
---
apiVersion: arbiter.k8s.com.cn/v1alpha1
kind: ObservabilityIndicant
metadata:
name: real-metrics-server-node-mem-0
labels:
test: node-cpu-load-aware-ms
spec:
metric:
historyLimit: 1
metricIntervalSeconds: 30
metrics:
memory:
aggregations:
- time
description: ""
query: ""
unit: "byte"
timeRangeSeconds: 600
source: metrics-server
targetRef:
group: ""
index: 0
kind: Node
labels:
data-test: data-test
name: ""
namespace: ""
version: v1
status:
conditions: []
phase: ""
metrics: {}
---
apiVersion: arbiter.k8s.com.cn/v1alpha1
kind: ObservabilityIndicant
metadata:
name: real-metrics-server-node-cpu-1
labels:
test: node-cpu-load-aware-ms
spec:
metric:
historyLimit: 1
metricIntervalSeconds: 30
metrics:
cpu:
aggregations:
- time
description: ""
query: ""
unit: 'm'
timeRangeSeconds: 600
source: metrics-server
targetRef:
group: ""
index: 1
kind: Node
labels:
data-test: data-test
name: ""
namespace: ""
version: v1
status:
conditions: []
phase: ""
metrics: {}
---
apiVersion: arbiter.k8s.com.cn/v1alpha1
kind: ObservabilityIndicant
metadata:
name: real-metrics-server-node-mem-1
labels:
test: node-cpu-load-aware-ms
spec:
metric:
historyLimit: 1
metricIntervalSeconds: 30
metrics:
memory:
aggregations:
- time
description: ""
query: ""
unit: "byte"
timeRangeSeconds: 600
source: metrics-server
targetRef:
group: ""
index: 1
kind: Node
labels:
data-test: data-test
name: ""
namespace: ""
version: v1
status:
conditions: []
phase: ""
metrics: {}
然后应用我们的 Arbiter Score
CR,score()
函数是用 JS 写的,你可以写任意的逻辑来给节点打分:
apiVersion: arbiter.k8s.com.cn/v1alpha1
kind: Score
metadata:
name: real-metrics-server
spec:
weight: 100
logic: |
// obi syntax rules: obi_ns-obi_name
const NodeCPUOBI = new Map([['arbiter-e2e-control-plane', 'OBINS-real-metrics-server-node-cpu-0'], ['arbiter-e2e-worker', 'OBINS-real-metrics-server-node-cpu-1'],]);
const NodeMemOBI = new Map([['arbiter-e2e-control-plane', 'OBINS-real-metrics-server-node-mem-0'], ['arbiter-e2e-worker', 'OBINS-real-metrics-server-node-mem-1'],]);
function getPodCpuMemReq() {
const DefaultCPUReq = 100; // 0.1 core
const DefaultMemReq = 200 * 1024 * 1024; // 200MB
var podContainer = pod.raw.spec.containers;
if (podContainer == undefined) {
return [DefaultCPUReq, DefaultMemReq];
}
var cpuReq = 0;
var memReq = 0;
for (var i = 0; i < podContainer.length; i++) {
var resources = podContainer[i].resources;
if (resources.requests == undefined) {
cpuReq += DefaultCPUReq;
memReq += DefaultMemReq;
continue
}
cpuReq += cpuParser(resources.requests.cpu);
memReq += memParser(resources.requests.memory);
}
var podInitContainers = pod.raw.spec.initContainers;
if (podInitContainers == undefined) {
return [cpuReq, memReq];
}
var initCPUReq = 0;
var initMemReq = 0;
for (var i = 0; i < podInitContainers.length; i++) {
var resources = podInitContainers[i].resources;
if (resources.requests == undefined) {
initCPUReq = DefaultCPUReq;
initMemReq = DefaultMemReq;
} else {
initCPUReq = cpuParser(resources.requests.cpu);
}
if (initCPUReq > cpuReq) {
cpuReq = initCPUReq;
}
if (initMemReq > memReq) {
memReq = initMemReq;
}
}
return [cpuReq, memReq];
}
function cpuParser(input) {
const milliMatch = input.match(/^([0-9]+)m$/);
if (milliMatch) {
return parseInt(milliMatch[1]);
}
return parseFloat(input) * 1000;
}
function memParser(input) {
const memoryMultipliers = {
k: 1000, M: 1000 ** 2, G: 1000 ** 3, Ki: 1024, Mi: 1024 ** 2, Gi: 1024 ** 3,
};
const unitMatch = input.match(/^([0-9]+)([A-Za-z]{1,2})$/);
if (unitMatch) {
return parseInt(unitMatch[1], 10) * memoryMultipliers[unitMatch[2]];
}
return parseInt(input, 10);
}
function score() {
// Feel free to modify this score function to suit your needs.
// This score function replaces the default score function in the scheduling framework.
// It inputs the pod and node to be scheduled, and outputs a number (usually 0 to 100).
// The higher the number, the more the pod tends to be scheduled to this node.
// The current example shows the scoring based on the actual cpu usage of the node.
var req = getPodCpuMemReq();
var podCPUReq = req[0];
var podMemReq = req[1];
var nodeName = node.raw.metadata.name;
var capacity = node.raw.status.allocatable;
var cpuCap = cpuParser(capacity.cpu);
var memCap = memParser(capacity.memory);
var cpuUsed = node.cpuReq;
var memUsed = node.memReq;
var cpuReal = node.obi[NodeCPUOBI.get(nodeName)].metric.cpu;
if (cpuReal == undefined || cpuReal.avg == undefined) {
console.error('[arbiter-js-real-metrics-server] cant find node cpu metric', nodeName);
} else {
cpuUsed = cpuReal.avg; // if has metric, use metric instead
}
var memReal = node.obi[NodeMemOBI.get(nodeName)].metric.memory;
if (memReal == undefined || memReal.avg == undefined) {
console.error('[arbiter-js-real-metrics-server] cant find node mem metric', nodeName);
} else {
memUsed = memReal.avg; // if has metric, use metric instead
}
console.log('[arbiter-js-real-metrics-server] cpuUsed', cpuUsed);
// LeastAllocated
var cpuScore = (cpuCap - cpuUsed - podCPUReq) / cpuCap;
console.log('[arbiter-js-real-metrics-server] cpuScore:', cpuScore, 'nodeName', nodeName, 'cpuCap', cpuCap, 'cpuUsed', cpuUsed, 'podCPUReq', podCPUReq);
var memScore = (memCap - memUsed - podMemReq) / memCap;
console.log('[arbiter-js-real-metrics-server] memScore:', memScore, 'nodeName', nodeName, 'memCap', memCap, 'memUsed', memUsed, 'podMemReq', podMemReq);
return (cpuScore + memScore) / 2 * 100;
}
上面的打分逻辑模仿了 kubernetes 默认的 LeastAllocated 打分算法,给资源使用低的节点更高的分数,从而实现将新的 pod 调度到资源使用低的节点,区别是我们的打分逻辑使用的是从 OBI 中获取的节点的真实资源使用情况,而不是 pod 的 manifest 中声明的 request 和 limit 值。
强制删除 pod 以使它们重新调度,你会看到它们都被调度到 CPU 使用率较低的节点上。
$ kubectl delete po -l app=test-busybox-mul-ms
pod "test-busybox-mul-ms-56678f47f5-6zxrf" deleted
pod "test-busybox-mul-ms-56678f47f5-8zlxj" deleted
pod "test-busybox-mul-ms-56678f47f5-mlwqf" deleted
pod "test-busybox-mul-ms-56678f47f5-ntds5" deleted
$ kubectl get po -l app=test-busybox-mul-ms
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
test-busybox-mul-ms-56678f47f5-ddgbl 1/1 Running 0 56s 10.244.0.11 arbiter-e2e-control-plane <none> <none>
test-busybox-mul-ms-56678f47f5-lkfmb 1/1 Running 0 56s 10.244.0.12 arbiter-e2e-control-plane <none> <none>
test-busybox-mul-ms-56678f47f5-p7sjn 1/1 Running 0 56s 10.244.0.13 arbiter-e2e-control-plane <none> <none>
test-busybox-mul-ms-56678f47f5-rxqpz 1/1 Running 0 56s 10.244.0.14 arbiter-e2e-control-plane <none> <none>